DataSheet_2_IgG Immune Complexes Inhibit Naïve T Cell Proliferation and Suppress Effector Function in Cytotoxic T Cells.xlsx
Elevated levels of circulating immune complexes are associated with autoimmunity and with worse prognoses in cancer. Here, we examined the effects of well-defined, soluble immune complexes (ICs) on human peripheral T cells. We demonstrate that IgG-ICs inhibit the proliferation and differentiation of a subset of naïve T cells but stimulate the division of another naïve-like T cell subset. Phenotypic analysis by multi-parameter flow cytometry and RNA-Seq were used to characterize the inhibited and stimulated T cells revealing that the inhibited subset presented immature features resembling those of recent thymic emigrants and non-activated naïve T cells, whereas the stimulated subset exhibited transcriptional features indicative of a more differentiated, early memory progenitor with a naïve-like phenotype. Furthermore, we show that while IgG1-ICs do not profoundly inhibit the proliferation of memory T cells, IgG1-ICs suppress the production of granzyme-β and perforin in cytotoxic memory T cells. Our findings reveal how ICs can link humoral immunity and T cell function.
History
References
- https://doi.org//10.1007/s13238-017-0457-8
- https://doi.org//10.3109/0886022X.2010.516852
- https://doi.org//10.1177/0192623314526475
- https://doi.org//10.1080/10428190290006008
- https://doi.org//10.1038/nri2762
- https://doi.org//10.3389/fimmu.2018.02644
- https://doi.org//10.4049/jimmunol.1600281
- https://doi.org//10.1038/nri2206
- https://doi.org//10.1111/imr.12350
- https://doi.org//10.1038/ni.2939
- https://doi.org//10.1038/nm.2862
- https://doi.org//10.3389/fimmu.2014.00520
- https://doi.org//10.4049/jimmunol.1202017
- https://doi.org//10.1038/nrd2909
- https://doi.org//10.1016/j.tibtech.2014.11.001
- https://doi.org//10.3389/fimmu.2019.00292
- https://doi.org//10.1111/imcb.12326
- https://doi.org//10.3389/fimmu.2020.00118
- https://doi.org//10.1016/j.immuni.2019.12.012
- https://doi.org//10.4049/jimmunol.1302232
- https://doi.org//10.1074/jbc.M114.599266
- https://doi.org//10.1172/JCI127590
- https://doi.org//10.1038/nature21710
- https://doi.org//10.4049/jimmunol.1900422
- https://doi.org//10.1016/j.immuni.2019.12.006
- https://doi.org//10.1111/j.1365-2567.2007.02588.x
- https://doi.org//10.1002/cyto.a.21010
- https://doi.org//10.14806/ej.17.1.200
- https://doi.org//10.1038/nmeth.3317
- https://doi.org//10.1093/bioinformatics/btt656
- https://doi.org//10.1186/s13059-014-0550-8
- https://doi.org//10.1093/bioinformatics/btw354
- https://doi.org//10.1093/bioinformatics/bty896
- https://doi.org//10.1016/j.cels.2015.12.004
- https://doi.org//10.1016/j.immuni.2015.01.006
- https://doi.org//10.1016/j.cell.2016.08.052
- https://doi.org//10.1093/bioinformatics/btm254
- https://doi.org//10.1016/j.cell.2017.05.035
- https://doi.org//10.4049/jimmunol.180.7.4550
- https://doi.org//10.4049/jimmunol.1200501
- https://doi.org//10.1016/j.celrep.2015.11.027
- https://doi.org//10.1073/pnas.0908590107
- https://doi.org//10.1038/nri3229
- https://doi.org//10.1038/nature25144
- https://doi.org//10.1152/advan.00066.2013
- https://doi.org//10.1038/nri3567
- https://doi.org//10.4049/jimmunol.1102695
- https://doi.org//10.1038/ni.3093
- https://doi.org//10.1038/s41577-018-0001-y
- https://doi.org//10.1038/ni.3483
- https://doi.org//10.4049/jimmunol.1901072
- https://doi.org//10.1002/cyto.a.22351
- https://doi.org//10.1155/2016/8941260
- https://doi.org//10.1038/s41577-019-0221-9
- https://doi.org//10.1084/jem.20142110
- https://doi.org//10.1038/nri.2016.56
- https://doi.org//10.1016/j.immuni.2018.02.010
- https://doi.org//10.1172/jci.insight.93739
- https://doi.org//10.1073/pnas.070061597
- https://doi.org//10.4049/jimmunol.166.2.900
- https://doi.org//10.1016/j.cell.2018.05.029
- https://doi.org//10.1073/pnas.0506580102
- https://doi.org//10.1038/sj.cdd.4401845
- https://doi.org//10.1038/ni1268
- https://doi.org//10.1084/jem.20170697
- https://doi.org//10.1038/nri3198
- https://doi.org//10.1038/nm0208-118
- https://doi.org//10.1038/nri.2017.108
- https://doi.org//10.1016/j.bbcan.2017.05.007
- https://doi.org//10.3389/fimmu.2013.00020
- https://doi.org//10.11648/j.ijgg.20170501.11
- https://doi.org//10.1002/ijc.2910200611
- https://doi.org//10.1038/nri1248
- https://doi.org//10.1073/pnas.97.7.3394
- https://doi.org//10.1111/j.1600-065X.2009.00770.x
- https://doi.org//10.1016/j.immuni.2005.11.007
- https://doi.org//10.1016/j.imlet.2010.04.008
- https://doi.org//10.3389/fimmu.2016.00378
- https://doi.org//10.1002/hep.28919
- https://doi.org//10.1038/nm1707
- https://doi.org//10.1016/S1471-4906(01)01873-7
- https://doi.org//10.1371/journal.pone.0045851
- https://doi.org//10.1002/eji.200323534
- https://doi.org//10.1016/j.jaci.2014.08.049
- https://doi.org//10.1016/j.omtm.2019.11.018
- https://doi.org//10.1172/JCI125423
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity