DataSheet_1_Novel and Known Gene-Smoking Interactions With cIMT Identified as Potential Drivers for Atherosclerosis Risk in West-African Populations of the AWI-Gen Study.xlsx

Introduction

Atherosclerosis is a key contributor to the burden of cardiovascular diseases (CVDs) and many epidemiological studies have reported on the effect of smoking on carotid intima-media thickness (cIMT) and its subsequent effect on CVD risk. Gene-environment interaction studies have contributed towards understanding some of the missing heritability of genome-wide association studies. Gene-smoking interactions on cIMT have been studied in non-African populations (European, Latino-American, and African American) but no comparable African research has been reported. Our aim was to investigate smoking-SNP interactions on cIMT in two West African populations by genome-wide analysis.

Materials and methods

Only male participants from Burkina Faso (Nanoro = 993) and Ghana (Navrongo = 783) were included, as smoking was extremely rare among women. Phenotype and genotype data underwent stringent QC and genotype imputation was performed using the Sanger African Imputation Panel. Smoking prevalence among men was 13.3% in Nanoro and 42.5% in Navrongo. We analyzed gene-smoking interactions with PLINK after adjusting for covariates: age and 6 PCs (Model 1); age, BMI, blood pressure, fasting glucose, cholesterol levels, MVPA, and 6 PCs (Model 2). All analyses were performed at site level and for the combined data set.

Results

In Nanoro, we identified new gene-smoking interaction variants for cIMT within the previously described RCBTB1 region (rs112017404, rs144170770, and rs4941649) (Model 1: p = 1.35E-07; Model 2: p = 3.08E-08). In the combined sample, two novel intergenic interacting variants were identified, rs1192824 in the regulatory region of TBC1D8 (p = 5.90E-09) and rs77461169 (p = 4.48E-06) located in an upstream region of open chromatin. In silico functional analysis suggests the involvement of genes implicated in biological processes related to cell or biological adhesion and regulatory processes in gene-smoking interactions with cIMT (as evidenced by chromatin interactions and eQTLs).

Discussion

This is the first gene-smoking interaction study for cIMT, as a risk factor for atherosclerosis, in sub-Saharan African populations. In addition to replicating previously known signals for RCBTB1, we identified two novel genomic regions (TBC1D8, near BCHE) involved in this gene-environment interaction.