DataSheet_1_Indoleamine 2, 3-Dioxygenase Promotes Aryl Hydrocarbon Receptor-Dependent Differentiation Of Regulatory B Cells in Lung Cancer.pdf
Regulatory B cells (Breg) are IL-10 producing subsets of B cells that contribute to immunosuppression in the tumor microenvironment (TME). Breg are elevated in patients with lung cancer; however, the mechanisms underlying Breg development and their function in lung cancer have not been adequately elucidated. Herein, we report a novel role for Indoleamine 2, 3- dioxygenase (IDO), a metabolic enzyme that degrades tryptophan (Trp) and the Trp metabolite L-kynurenine (L-Kyn) in the regulation of Breg differentiation in the lung TME. Using a syngeneic mouse model of lung cancer, we report that Breg frequencies significantly increased during tumor progression in the lung TME and secondary lymphoid organs, while Breg were reduced in tumor-bearing IDO deficient mice (IDO-/-). Trp metabolite L-Kyn promoted Breg differentiation in-vitro in an aryl hydrocarbon receptor (AhR), toll-like receptor-4-myeloid differentiation primary response 88, (TLR4-MyD88) dependent manner. Importantly, using mouse models with conditional deletion of IDO in myeloid-lineage cells, we identified a significant role for immunosuppressive myeloid-derived suppressor cell (MDSC)-associated IDO in modulating in-vivo and ex-vivo differentiation of Breg. Our studies thus identify Trp metabolism as a therapeutic target to modulate regulatory B cell function during lung cancer progression.
History
References
- https://doi.org//10.3322/caac.21166
- https://doi.org//10.1073/pnas.0701009104
- https://doi.org//10.1146/annurev-genom-082908-150046
- https://doi.org//10.4049/jimmunol.1600576
- https://doi.org//10.1016/j.ctrv.2013.10.001
- https://doi.org//10.1038/nm1093
- https://doi.org//10.1016/j.ccr.2009.06.018
- https://doi.org//10.1038/nrc1782
- https://doi.org//10.1126/science.1203486
- https://doi.org//10.1158/0008-5472.CAN-10-4316
- https://doi.org//10.1158/0008-5472.CAN-05-3766
- https://doi.org//10.4161/onci.25443
- https://doi.org//10.1016/j.ccr.2005.04.014
- https://doi.org//10.1073/pnas.1100994108
- https://doi.org//10.1007/s00262-012-1313-6
- https://doi.org//10.1146/annurev-immunol-020711-074934
- https://doi.org//10.1186/s12967-014-0304-0
- https://doi.org//10.1093/intimm/2.9.821
- https://doi.org//10.4049/jimmunol.180.9.5771
- https://doi.org//10.1016/S1074-7613%2802%2900274-1
- https://doi.org//10.1084/jem.20021293
- https://doi.org//10.4049/jimmunol.179.11.7225
- https://doi.org//10.4049/jimmunol.0902391
- https://doi.org//10.4049/jimmunol.0902385
- https://doi.org//10.1038/ni833
- https://doi.org//10.1172/JCI59266
- https://doi.org//10.1182/blood-2008-01-135160
- https://doi.org//10.1016/j.molimm.2010.09.010
- https://doi.org//10.1007/s00011-009-0014-x
- https://doi.org//10.1038/nm.3680
- https://doi.org//10.4049/jimmunol.180.7.4763
- https://doi.org//10.21767/2254-6081-C1-006
- https://doi.org//10.4049/jimmunol.1701069
- https://doi.org//10.1038/nri2506
- https://doi.org//10.4049/jimmunol.181.8.5791
- https://doi.org//10.4049/jimmunol.0802740
- https://doi.org//10.1038/ncomms12150
- https://doi.org//10.1158/0008-5472.CAN-05-3755
- https://doi.org//10.1158/0008-5472.CAN-05-1299
- https://doi.org//10.18632/oncotarget.12249
- https://doi.org//10.1158/0008-5472.CAN-13-0987
- https://doi.org//10.1002/eji.201444522
- https://doi.org//10.1182/blood-2012-08-449413
- https://doi.org//10.1172/jci31178
- https://doi.org//10.1073/pnas.1009201107
- https://doi.org//10.1038/nature10491
- https://doi.org//10.3390/ijms19051468
- https://doi.org//10.4049/jimmunol.0901163
- https://doi.org//10.1016/j.it.2007.10.004
- https://doi.org//10.1002/eji.1830220314
- https://doi.org//10.4049/jimmunol.176.11.6752
- https://doi.org//10.1016/j.tiv.2014.11.011
- https://doi.org//10.1016/j.immuni.2015.04.005
- https://doi.org//10.1128/IAI.72.9.5041-5051.2004
- https://doi.org//10.1038/sj.onc.1203239
- https://doi.org//10.1189/jlb.0912436
- https://doi.org//10.4049/jimmunol.1402854
- https://doi.org//10.4137/ijtr.s4157
- https://doi.org//10.3109/08830185.2012.679989
- https://doi.org//10.1016/j.imlet.2007.06.001
- https://doi.org//10.1186/1471-2407-14-335
- https://doi.org//10.1038/251550a0
- https://doi.org//10.1016/j.humimm.2015.10.015
- https://doi.org//10.1016/j.canlet.2014.09.026
- https://doi.org//10.1158/0008-5472.CAN-12-3450
- https://doi.org//10.5114/ceji.2015.52840
- https://doi.org//10.1016/j.immuni.2016.04.003
- https://doi.org//10.4049/jimmunol.1300649
- https://doi.org//10.1016/j.oraloncology.2015.11.003
- https://doi.org//10.1038/nm934
- https://doi.org//10.1007/s00262-008-0513-6
- https://doi.org//10.1016/j.molimm.2014.01.014
- https://doi.org//10.1073/pnas.0700326104
- https://doi.org//10.4049/jimmunol.175.7.4180
- https://doi.org//10.1002/art.39767
- https://doi.org//10.1038/nrn3257
- https://doi.org//10.4049/jimmunol.0903670
- https://doi.org//10.1073/pnas.1504276112
- https://doi.org//10.4049/jimmunol.0713344
- https://doi.org//10.1073/pnas.1014465107
- https://doi.org//10.1016/0041-008X%2890%2990356-Y
- https://doi.org//10.1084/jem.20160789
- https://doi.org//10.15252/embj.201695027
- https://doi.org//10.4049/jimmunol.1201920
- https://doi.org//10.1016/j.biocel.2014.10.005
- https://doi.org//10.1016/0008-8749%2891%2990130-4
- https://doi.org//10.1002/ijc.21177
- https://doi.org//10.1097/00002371-200407000-00003
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity