DataSheet_1_IFNβ Is a Potent Adjuvant for Cancer Vaccination Strategies.pdf
Cancer vaccination drives the generation of anti-tumor T cell immunity and can be enhanced by the inclusion of effective immune adjuvants such as type I interferons (IFNs). Whilst type I IFNs have been shown to promote cross-priming of T cells, the role of individual subtypes remains unclear. Here we systematically compared the capacity of distinct type I IFN subtypes to enhance T cell responses to a whole-cell vaccination strategy in a pre-clinical murine model. We show that vaccination in combination with IFNβ induces significantly greater expansion of tumor-specific CD8+ T cells than the other type I IFN subtypes tested. Optimal expansion was dependent on the presence of XCR1+ dendritic cells, CD4+ T cells, and CD40/CD40L signaling. Therapeutically, vaccination with IFNβ delayed tumor progression when compared to vaccination without IFN. When vaccinated in combination with anti-PD-L1 checkpoint blockade therapy (CPB), the inclusion of IFNβ associated with more mice experiencing complete regression and a trend in increased overall survival. This work demonstrates the potent adjuvant activity of IFNβ, highlighting its potential to enhance cancer vaccination strategies alone and in combination with CPB.
History
References
- https://doi.org//10.1038/nature22991
- https://doi.org//10.1038/nri.2017.131
- https://doi.org//10.1080/14760584.2020.1733420
- https://doi.org//10.1038/nature23003
- https://doi.org//10.1098/rspb.1957.0048
- https://doi.org//10.1038/223844a0
- https://doi.org//10.1016/j.celrep.2017.07.075
- https://doi.org//10.1158/1078-0432.CCR-10-1114
- https://doi.org//10.1038/nri3845
- https://doi.org//10.1146/annurev.immunol.17.1.189
- https://doi.org//10.1084/jem.189.3.521
- https://doi.org//10.1084/jem.20050821
- https://doi.org//10.1093/intimm/14.4.411
- https://doi.org//10.1038/ni978
- https://doi.org//10.1038/ni1213
- https://doi.org//10.1002/eji.200535579
- https://doi.org//10.1084/jem.20101158
- https://doi.org//10.1084/jem.20101159
- https://doi.org//10.4049/jimmunol.1004163
- https://doi.org//10.1016/j.cytogfr.2007.10.007
- https://doi.org//10.1016/j.ccr.2013.12.004
- https://doi.org//10.1016/j.ygeno.2004.03.003
- https://doi.org//10.1016/j.ejca.2017.06.006
- https://doi.org//10.1128/JVI.00451-16
- https://doi.org//10.1089/107999002760274845
- https://doi.org//10.1111/bph.12010
- https://doi.org//10.3389/fimmu.2020.00542
- https://doi.org//10.1080/2162402X.2015.1019198
- https://doi.org//10.1046/j.1365-2567.2002.01423.x
- https://doi.org//10.1002/0471142735.im1421s92
- https://doi.org//10.1046/j.1440-1711.2002.01071.x
- https://doi.org//10.1126/science.8009221
- https://doi.org//10.4049/jimmunol.1202798
- https://doi.org//10.1073/pnas.96.18.10338
- https://doi.org//10.1016/0166-3542%2892%2990074-F
- https://doi.org//10.1182/blood-2010-08-298117
- https://doi.org//10.1128/jvi.69.9.5849-5852.1995
- https://doi.org//10.1586/14760584.2015.966085
- https://doi.org//10.1128/JVI.73.9.7619-7626.1999
- https://doi.org//10.1016/j.immuni.2009.08.027
- https://doi.org//10.3389/fimmu.2012.00214
- https://doi.org//10.1016/j.ccell.2014.09.007
- https://doi.org//10.1038/s41591-018-0085-8
- https://doi.org//10.3389/fimmu.2014.00159
- https://doi.org//10.3389/fimmu.2017.00304
- https://doi.org//10.1084/jem.20010938
- https://doi.org//10.1111/j.0105-2896.2004.00142.x
- https://doi.org//10.1038/s41577-020-0275-8
- https://doi.org//10.1158/0008-5472.CAN-12-2606
- https://doi.org//10.3389/fimmu.2019.00008
- https://doi.org//10.4161/cbt.10.12.13450
- https://doi.org//10.1016/j.immuni.2016.03.012
- https://doi.org//10.4049/jimmunol.1701593
- https://doi.org//10.1038/s41591-019-0410-x
- https://doi.org//10.1016/j.coi.2017.07.015
- https://doi.org//10.4049/jimmunol.0802982
- https://doi.org//10.1371/journal.pbio.1001759
- https://doi.org//10.1016/j.jmb.2006.11.053
- https://doi.org//10.1038/ni.2667
- https://doi.org//10.1074/jbc.M806019200
- https://doi.org//10.1371/journal.pone.0022200
- https://doi.org//10.3389/fimmu.2018.02990
- https://doi.org//10.1126/science.1164206
- https://doi.org//10.1002/eji.201142091
- https://doi.org//10.1016/j.celrep.2015.12.058
- https://doi.org//10.1126/science.aaa4971
- https://doi.org//10.1016/S1470-2045%2817%2930607-1
- https://doi.org//10.1200/EDBK_240837
- https://doi.org//10.1200/JCO.2011.41.3799
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity