DataSheet_1_Effects of Polysaccharides From Auricularia auricula on the Immuno-Stimulatory Activity and Gut Microbiota in Immunosuppressed Mice Induced by Cyclophosphamide.docx
Recently, the immuno-enhancing potential of polysaccharide from Auricularia auricula (AAP) has been an area of research interest. However, the immune-stimulatory activity and mechanisms of AAP in immunosuppressive mice treated with cyclophosphamide (CTX) are still poorly understood. This study aimed to evaluate the immuno-enhancing effects of AAP and mine its possible mechanisms. Firstly, polysaccharides were isolated from A. auricula and purified. Secondly, the immune-stimulatory activities of the first AAP fraction (AAP1) were evaluated in the CTX-treated mice. Results showed that AAP1 significantly enhanced immune organ indexes, remarkably stimulated IFN-γ, IL-2, IL-4, IL-10, and TNF-α levels in the serum, and dramatically up-regulated the mRNA levels of Claudin-1, Occludin and ZO-1. Compared to the CTX group, AAP1 administration restored the gut microbiota composition similar to that of the control group by decreasing the ratio of Firmicutes/Bacteroidetes and increasing the relative abundances of short-chain fatty acid-producing microbiota. This study provides useful information for its further application as an immune-stimulator in foods and drugs.
History
References
- https://doi.org//10.3322/caac.21262
- https://doi.org//10.1002/cncr.22662
- https://doi.org//10.1158/1078-0432.CCR-05-2255
- https://doi.org//10.1016/0002-9343(84)90654-5
- https://doi.org//10.1128/AAC.44.9.2310-2318.2000
- https://doi.org//10.1016/j.micres.2014.11.002
- https://doi.org//10.1007/s00018-017-2674-y
- https://doi.org//10.1038/nri.2017.7
- https://doi.org//10.1016/j.immuni.2017.04.008
- https://doi.org//10.1039/C8FO01946K
- https://doi.org//10.1039/C7FO01302G
- https://doi.org//10.3390/molecules23071801
- https://doi.org//10.1039/C9FO00638A
- https://doi.org//10.1039/C9FO00713J
- https://doi.org//10.1016/j.jff.2017.08.012
- https://doi.org//10.1039/C4FO00569D
- https://doi.org//10.1016/j.ifset.2008.06.004
- https://doi.org//10.1016/j.foodchem.2006.03.017
- https://doi.org//10.1016/j.carbpol.2012.06.060
- https://doi.org//10.1016/j.carbpol.2012.03.078
- https://doi.org//10.1016/j.carbpol.2010.01.015
- https://doi.org//10.1016/j.jff.2020.104038
- https://doi.org//10.1016/j.foodres.2019.04.070
- https://doi.org//10.1016/j.carbpol.2012.03.082
- https://doi.org//10.9734/BJPR/2013/1994
- https://doi.org//10.1093/bioinformatics/btr507
- https://doi.org//10.1038/nmeth.f.303
- https://doi.org//10.1038/nmeth.2276
- https://doi.org//10.1093/bioinformatics/btr381
- https://doi.org//10.1038/nmeth.2604
- https://doi.org//10.1093/nar/gkt1209
- https://doi.org//10.1186/s40168-017-0295-1
- https://doi.org//10.1007/s11306-013-0500-6
- https://doi.org//10.1016/j.ijbiomac.2014.08.058
- https://doi.org//10.1016/j.carbpol.2015.09.065
- https://doi.org//10.1271/bbb.65.2334
- https://doi.org//10.1080/17843286.1961.11717655
- https://doi.org//10.1007/s00253-016-7619-0
- https://doi.org//10.1016/j.tox.2009.09.020
- https://doi.org//10.1182/blood-2018-99-112943
- https://doi.org//10.1073/pnas.1804556115
- https://doi.org//10.1016/j.jdermsci.2009.02.015
- https://doi.org//10.4049/jimmunol.1701502
- https://doi.org//10.1016/j.coi.2011.08.003
- https://doi.org//10.5772/intechopen.74550
- https://doi.org//10.1378/chest.117.4.1162
- https://doi.org//10.3389/fimmu.2018.00961
- https://doi.org//10.1016/j.carbpol.2015.06.046
- https://doi.org//10.3389/fimmu.2018.00356
- https://doi.org//10.1016/j.carbpol.2012.06.052
- https://doi.org//10.1016/j.fct.2016.11.033
- https://doi.org//10.1371/journal.pone.0221636
- https://doi.org//10.1083/jcb.141.7.1539
- https://doi.org//10.1152/ajpgi.00055.2011
- https://doi.org//10.1039/C8FO01699B
- https://doi.org//10.1039/C4FO00567H
- https://doi.org//10.1073/pnas.0904847106
- https://doi.org//10.1371/journal.pone.0090849
- https://doi.org//10.1016/j.cell.2011.04.022
- https://doi.org//10.1038/s41467-019-10068-5
- https://doi.org//10.4161/gmic.2.2.15232
- https://doi.org//10.1073/pnas.0901529106
- https://doi.org//10.1016/j.ijbiomac.2016.09.099
- https://doi.org//10.1016/j.carbpol.2014.10.051
- https://doi.org//10.1016/j.ijbiomac.2016.04.091
- https://doi.org//10.1038/nrgastro.2012.14
- https://doi.org//10.1186/s40168-014-0050-9
- https://doi.org//10.1016/j.humic.2016.10.001
- https://doi.org//10.1007/s00018-013-1318-0
- https://doi.org//10.1016/j.humic.2018.01.004
- https://doi.org//10.1128/CVI.13.2.219-226.2006
- https://doi.org//10.1016/j.intimp.2010.04.012
- https://doi.org//10.3168/jds.2018-16103
- https://doi.org//10.1111/j.1365-2672.2005.02605.x
- https://doi.org//10.1016/j.cell.2016.05.041
- https://doi.org//10.1016/j.chom.2018.05.012
- https://doi.org//10.1017/S0007114510003363
- https://doi.org//10.3389/fimmu.2019.01486
- https://doi.org//10.1080/09168451.2018.1433017
- https://doi.org//10.1053/j.gastro.2013.04.056
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity