DataSheet_1_Comprehensive Analysis of Myeloid Signature Genes in Head and Neck Squamous Cell Carcinoma to Predict the Prognosis and Immune Infiltration.zip
Myeloid cells are a major heterogeneous cell population in the tumor immune microenvironment (TIME). Imbalance of myeloid response remains a major obstacle to a favorable prognosis and successful immune therapy. Therefore, we aimed to construct a risk model to evaluate the myeloid contexture, which may facilitate the prediction of prognosis and immune infiltration in patients with head and neck squamous cell carcinoma (HNSCC). In our study, six myeloid signature genes (including CCL13, CCR7, CD276, IL1B, LYVE1 and VEGFC) analyzed from 52 differentially expressed myeloid signature genes were finally pooled to establish a prognostic risk model, termed as myeloid gene score (MGS) in a training cohort and validated in a test cohort and an independent external cohort. Furthermore, based on the MGS subgroups, we were able to effectively identify patients with a poor prognosis, aggressive clinical parameters, immune cell infiltration status and immunotherapy response. Thus, MGS may serve as an effective prognostic signature and predictive indicator for immunotherapy response in patients with HNSCC.
History
References
- https://doi.org//10.1038/nrc.2018.11
- https://doi.org//10.1038/nm.3394
- https://doi.org//10.1007/s10555-016-9643-z
- https://doi.org//10.1038/s41467-020-18070-y
- https://doi.org//10.1146/annurev-immunol-042718-041728
- https://doi.org//10.1038/nri3175
- https://doi.org//10.1016/j.cell.2010.03.014
- https://doi.org//10.1038/ni.1937
- https://doi.org//10.1016/j.cellimm.2018.02.008
- https://doi.org//10.1146/annurev-immunol-032414-112049
- https://doi.org//10.1016/j.cell.2018.09.030
- https://doi.org//10.3322/caac.21590
- https://doi.org//10.3322/caac.21492
- https://doi.org//10.1016/j.immuni.2018.03.023
- https://doi.org//10.1172/jci.insight.89829
- https://doi.org//10.1001/jamadermatol.2018.5595
- https://doi.org//10.1038/bjc.2013.640
- https://doi.org//10.1016/j.tranon.2019.11.008
- https://doi.org//10.1016/S0140-6736(18)31999-8
- https://doi.org//10.1016/j.oraloncology.2018.04.008
- https://doi.org//10.1056/NEJMoa1602252
- https://doi.org//10.2174/1871520618666180411110036
- https://doi.org//10.1038/bjc.2011.189
- https://doi.org//10.1016/j.cell.2018.02.052
- https://doi.org//10.1038/nbt1206-1471
- https://doi.org//10.1038/nature14129
- https://doi.org//10.1002/ijc.29649
- https://doi.org//10.1093/biostatistics/kxj037
- https://doi.org//10.1073/pnas.0506580102
- https://doi.org//10.1093/bioinformatics/btr260
- https://doi.org//10.1038/ncomms3612
- https://doi.org//10.1038/nmeth.3337
- https://doi.org//10.1038/nature25501
- https://doi.org//10.3389/fimmu.2019.00168
- https://doi.org//10.7554/eLife.36967
- https://doi.org//10.1038/nrc.2016.54
- https://doi.org//10.1038/nrclinonc.2017.101
- https://doi.org//10.3389/fimmu.2019.00893
- https://doi.org//10.3389/fonc.2020.546110
- https://doi.org//10.3390/jcm7070172
- https://doi.org//10.1111/cas.13744
- https://doi.org//10.1515/med-2019-0076
- https://doi.org//10.1111/bpa.12829
- https://doi.org//10.2147/OTT.S271891
- https://doi.org//10.1002/mgg3.779
- https://doi.org//10.1530/ERC-17-0309
- https://doi.org//10.1093/carcin/bgp122
- https://doi.org//10.1016/j.yexcr.2015.06.014
- https://doi.org//10.3748/wjg.v17.i27.3220
- https://doi.org//10.1016/s1471-4906(01)01936-6
- https://doi.org//10.3390/cancers11081120
- https://doi.org//10.1007/s10585-015-9741-2
- https://doi.org//10.1016/j.canlet.2014.12.046
- https://doi.org//10.1007/s13577-020-00375-1
- https://doi.org//10.1158/1078-0432.CCR-10-3186
- https://doi.org//10.1186/s12943-017-0592-0
- https://doi.org//10.1002/cam4.1039
- https://doi.org//10.1002/jcp.29525
- https://doi.org//10.1016/j.celrep.2020.03.038
- https://doi.org//10.1111/imr.12841
- https://doi.org//10.1038/nrc.2017.121
- https://doi.org//10.1016/j.it.2011.12.001
- https://doi.org//10.1002/jcb.27646
- https://doi.org//10.1016/S1471-4906(02)02302-5
- https://doi.org//10.1016/j.ccr.2009.12.019
- https://doi.org//10.1016/j.imlet.2019.03.011
- https://doi.org//10.1007/s12016-019-08753-w
- https://doi.org//10.1038/cr.2017.90
- https://doi.org//10.7150/ijbs.41105
- https://doi.org//10.1016/j.celrep.2017.03.037
- https://doi.org//10.1016/j.omtn.2020.08.030
- https://doi.org//10.7150/thno.36585
- https://doi.org//10.1016/j.omtn.2020.06.001
- https://doi.org//10.1038/ncb2784
- https://doi.org//10.1111/aji.13365
- https://doi.org//10.18632/oncotarget.21771
- https://doi.org//10.1016/j.celrep.2012.01.005
- https://doi.org//10.1158/0008-5472.CAN-18-3657
Usage metrics
Read the peer-reviewed publication
Categories
- Transplantation Immunology
- Tumour Immunology
- Immunology not elsewhere classified
- Immunology
- Veterinary Immunology
- Animal Immunology
- Genetic Immunology
- Applied Immunology (incl. Antibody Engineering, Xenotransplantation and T-cell Therapies)
- Autoimmunity
- Cellular Immunology
- Humoural Immunology and Immunochemistry
- Immunogenetics (incl. Genetic Immunology)
- Innate Immunity