DataSheet4_Identification of Non-Canonical Translation Products in C. elegans Using Tandem Mass Spectrometry.fasta
Transcriptome and ribosome sequencing have revealed the existence of many non-canonical transcripts, mainly containing splice variants, ncRNA, sORFs and altORFs. However, identification and characterization of products that may be translated out of these remains a challenge. Addressing this, we here report on 552 non-canonical proteins and splice variants in the model organism C. elegans using tandem mass spectrometry. Aided by sequencing-based prediction, we generated a custom proteome database tailored to search for non-canonical translation products of C. elegans. Using this database, we mined available mass spectrometric resources of C. elegans, from which 51 novel, non-canonical proteins could be identified. Furthermore, we utilized diverse proteomic and peptidomic strategies to detect 40 novel non-canonical proteins in C. elegans by LC-TIMS-MS/MS, of which 6 were common with our meta-analysis of existing resources. Together, this permits us to provide a resource with detailed annotation of 467 splice variants and 85 novel proteins mapped onto UTRs, non-coding regions and alternative open reading frames of the C. elegans genome.
History
References
- https://doi.org//10.1016/j.ymeth.2015.06.013
- https://doi.org//10.1016/j.cell.2015.01.009
- https://doi.org//10.1093/nar/gku1077
- https://doi.org//10.1101/gr.7.8.768
- https://doi.org//10.1093/bioinformatics/btt106
- https://doi.org//10.1002/pmic.201900351
- https://doi.org//10.1093/genetics/77.1.71
- https://doi.org//10.1093/nar/gky936
- https://doi.org//10.1093/nar/gky936
- https://doi.org//10.1002/pmic.201700218
- https://doi.org//10.1186/1471-2105-10-421
- https://doi.org//10.1021/acs.jproteome.0c00254
- https://doi.org//10.1021/acs.analchem.9b04188
- https://doi.org//10.1093/bioinformatics/btaa608
- https://doi.org//10.1016/j.jprot.2020.103988
- https://doi.org//10.1101/2020.06.08.140681
- https://doi.org//10.1186/s12864-016-2855-3
- https://doi.org//10.1126/science.aay0262
- https://doi.org//10.1038/ncomms11663
- https://doi.org//10.3109/10409238.2015.1016215
- https://doi.org//10.1038/s41467-019-12816-z
- https://doi.org//10.1093/hmg/6.10.1735
- https://doi.org//10.1186/1471-2164-7-16
- https://doi.org//10.1186/s12864-016-3278-x
- https://doi.org//10.1016/j.celrep.2017.08.028
- https://doi.org//10.1895/wormbook.1.90.1
- https://doi.org//10.1186/gb-2006-7-4-r35
- https://doi.org//10.1186/s12864-019-5431-9
- https://doi.org//10.1093/bioinformatics/btz530
- https://doi.org//10.1093/bib/bbx005
- https://doi.org//10.1101/pdb.prot4644
- https://doi.org//10.1021/acs.jproteome.8b00032
- https://doi.org//10.1016/j.molcel.2013.12.013
- https://doi.org//10.1016/j.cell.2016.02.066
- https://doi.org//10.1021/pr500812t
- https://doi.org//10.15252/embj.201592759
- https://doi.org//10.1101/gr.4355406
- https://doi.org//10.1002/pmic.202000084
- https://doi.org//10.1021/acs.jproteome.5b00610
- https://doi.org//10.1038/nmeth.4256
- https://doi.org//10.1186/gb-2011-12-11-r118
- https://doi.org//10.1016/S0091-679X(08)61381-3
- https://doi.org//10.1002/pmic.201600419
- https://doi.org//10.1021/acs.analchem.6b00191
- https://doi.org//10.1021/acs.analchem.6b00191
- https://doi.org//10.1186/s13059-015-0742-x
- https://doi.org//10.1016/j.celrep.2018.05.058
- https://doi.org//10.1093/bioinformatics/bti588
- https://doi.org//10.1074/mcp.TIR118.000900
- https://doi.org//10.1021/acs.biochem.0c00672
- https://doi.org//10.1021/acs.jproteome.5b00029
- https://doi.org//10.1016/j.cels.2016.06.011
- https://doi.org//10.1016/j.cell.2015.05.022
- https://doi.org//10.1101/pdb.rec081299
- https://doi.org//10.1038/NMETH.3144
- https://doi.org//10.1093/nar/gkv1175
- https://doi.org//10.1093/nar/gkx1130
- https://doi.org//10.1093/nar/gkx1130
- https://doi.org//10.1101/gr.218255.116
- https://doi.org//10.32614/rj-2015-001
- https://doi.org//10.1016/j.ymeth.2017.03.023
- https://doi.org//10.1126/science.1248636
- https://doi.org//10.3791/4019
- https://doi.org//10.7554/eLife.13328
- https://doi.org//10.1021/acs.biochem.8b00726
- https://doi.org//10.1021/pr400208w
- https://doi.org//10.1038/s41598-020-65832-1
- https://doi.org//10.1038/ncomms11436
- https://doi.org//10.1074/mcp.R113.027797
- https://doi.org//10.1016/j.tig.2017.12.009
- https://doi.org//10.1101/gr.136515.111.influenced
- https://doi.org//10.1261/rna.02890211
- https://doi.org//10.1016/j.mcpro.2021.100076
- https://doi.org//10.1016/j.cmpb.2018.10.018
- https://doi.org//10.1021/acs.jproteome.7b00085
- https://doi.org//10.1016/j.jprot.2020.103965
- https://doi.org//10.1038/srep16923
- https://doi.org//10.1002/pmic.201700238
- https://doi.org//10.1093/nar/gkz966
- https://doi.org//10.1074/mcp.TIR120.002048
- https://doi.org//10.1074/mcp.TIR120.002048
- https://doi.org//10.1016/J.TIBS.2019.03.002
- https://doi.org//10.1074/mcp.M111.010587
- https://doi.org//10.1093/BIOINFORMATICS/BTV236
Usage metrics
Read the peer-reviewed publication
Categories
- Gene and Molecular Therapy
- Gene Expression (incl. Microarray and other genome-wide approaches)
- Genetics
- Genetically Modified Animals
- Livestock Cloning
- Developmental Genetics (incl. Sex Determination)
- Epigenetics (incl. Genome Methylation and Epigenomics)
- Biomarkers
- Genomics
- Genome Structure and Regulation
- Genetic Engineering