DataSheet2_RNA Sequencing Unveils Very Small RNAs With Potential Regulatory Functions in Bacteria.docx
RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8–15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16–30 nt in length [RNAs (16–30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8–30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.
History
References
- https://doi.org//10.1016/s0021-9258(19)68491-7
- https://doi.org//10.3402/jev.v4.27493
- https://doi.org//10.1016/S0022-2836(05)80360-2
- https://doi.org//10.1093/nar/15.5.2089
- https://doi.org//10.1016/S0960-9822(01)00270-6
- https://doi.org//10.1016/0003-2697(87)90160-6
- https://doi.org//10.1146/annurev-genet-112414-054804
- https://doi.org//10.1016/j.cell.2018.03.006
- https://doi.org//10.1080/20013078.2017.1401897
- https://doi.org//10.1371/journal.pone.0160440
- https://doi.org//10.1186/1471-2105-11-94
- https://doi.org//10.1146/annurev-micro-090817-062607
- https://doi.org//10.1016/j.abb.2009.07.023
- https://doi.org//10.1038/emboj.2012.229
- https://doi.org//10.1016/j.molcel.2015.12.023
- https://doi.org//10.1186/1471-2229-10-201
- https://doi.org//10.1177/0022034516685071
- https://doi.org//10.1007/978-1-62703-245-2_16
- https://doi.org//10.1128/AEM.01941-14
- https://doi.org//10.1371/journal.pone.0212996
- https://doi.org//10.1016/j.mib.2015.12.006
- https://doi.org//10.3390/ijms21051627
- https://doi.org//10.1093/cvr/cvs007
- https://doi.org//10.1128/MMBR.00031-09
- https://doi.org//10.1002/mbo3.235
- https://doi.org//10.1271/bbb.69.1098
- https://doi.org//10.1101/gad.243485.114
- https://doi.org//10.1155/2015/862130
- https://doi.org//10.1093/nar/gkg297
- https://doi.org//10.1007/s00018-017-2595-9
- https://doi.org//10.1371/journal.pone.0123448
- https://doi.org//10.1074/jbc.275.17.12489
- https://doi.org//10.1016/s0021-9258(18)48095-7
- https://doi.org//10.1016/j.bbagrm.2020.194504
- https://doi.org//10.1042/BST20180171
- https://doi.org//10.1007/s00284-013-0411-9
- https://doi.org//10.3390/ijms23073644
- https://doi.org//10.3390/life5041638
- https://doi.org//10.1073/pnas.0500607102
- https://doi.org//10.1093/biostatistics/4.3.465
- https://doi.org//10.1016/0022-2836(68)90236-2
- https://doi.org//10.1016/j.micres.2014.09.006
- https://doi.org//10.1371/journal.ppat.1005672
- https://doi.org//10.1093/nar/gkl243
- https://doi.org//10.1146/annurev.micro.091208.073413
- https://doi.org//10.1186/s12915-014-0078-0
- https://doi.org//10.1016/j.tibs.2016.05.004
- https://doi.org//10.1093/nar/gku1138
- https://doi.org//10.1261/rna.066126.118
- https://doi.org//10.1182/blood-2013-03-492801
- https://doi.org//10.1160/TH15-05-0389
- https://doi.org//10.1080/21541264.2015.1093064
- https://doi.org//10.3390/ijms22189757
- https://doi.org//10.3390/ncrna5010016
- https://doi.org//10.1111/j.1574-6968.2011.02441.x
- https://doi.org//10.1016/0092-8674(93)90529-y
- https://doi.org//10.1101/gad.1837609
- https://doi.org//10.1093/bib/bbq015
- https://doi.org//10.1093/nar/gkaa831
- https://doi.org//10.3389/fmicb.2021.687632
- https://doi.org//10.3390/ijms23073692
- https://doi.org//10.1073/pnas.0401799101
- https://doi.org//10.1038/nprot.2013.092
- https://doi.org//10.1073/pnas.81.7.1966
- https://doi.org//10.3389/fgene.2015.00002
- https://doi.org//10.1093/nar/gkt393
- https://doi.org//10.2144/000113819
- https://doi.org//10.3389/fgene.2012.00099
- https://doi.org//10.1093/nar/gkx1075
- https://doi.org//10.3402/jev.v4.27495
- https://doi.org//10.1160/TH15-05-0389
- https://doi.org//10.1074/jbc.M112.371799
- https://doi.org//10.1038/nrmicro3525
- https://doi.org//10.1007/s00018-017-2469-1
- https://doi.org//10.1038/srep15329
- https://doi.org//10.1186/s12866-019-1433-7
- https://doi.org//10.1016/j.ygeno.2017.03.001
- https://doi.org//10.1016/j.tim.2018.02.009
- https://doi.org//10.1038/ncomms3980
- https://doi.org//10.1016/bs.adgen.2015.05.001
- https://doi.org//10.1093/nar/gkv1127
- https://doi.org//10.1016/j.cell.2009.01.043
- https://doi.org//10.1186/s12967-021-02731-7
- https://doi.org//10.1093/bioinformatics/btu077
- https://doi.org//10.1038/aps.2017.82
- https://doi.org//10.1261/rna.074922.120
- https://doi.org//10.1038/s41598-018-23226-4
- https://doi.org//10.1093/nar/gkw414
- https://doi.org//10.1016/j.ymeth.2020.10.006