DataSheet1_Two-Step Thermochemical CO2 Splitting Using Partially-Substituted Perovskite Oxides of La0.7Sr0.3Mn0.9X0.1O3 for Solar Fuel Production.docx
We investigated, herein, the redox activity of partial substitution of the B-site in a series of lanthanum/strontium-manganese-based (LSM) perovskite oxide, La0.7Sr0.3Mn0.9X0.1O3 for solar two-step thermochemical fuel production using concentrated solar radiation as an energy source. We systematically investigated the effects of partial substitution in LaSrMnO3 in terms of their kinetics behavior, oxygen/CO productivity, thermal reduction/oxidation temperatures. Furthermore, repeatability was evaluated and compared among the samples prepared using the same procedure and studied using the same test method. We observed and evaluated the long-term thermal stability of the redox activity and valence variation of the constituting ionic species of the perovskite in the two-step thermochemical CO2 splitting. From the perspectives of superior activity and long-term repeatability, Ni-, Co-, and Mg-substituted LSM perovskites are promising for thermochemical two-step CO2/H2O splitting to produce synthetic gas.
History
References
- https://doi.org//10.1016/j.rser.2014.09.039
- https://doi.org//10.1016/j.ijhydene.2020.02.126
- https://doi.org//10.1002/ente.202100222
- https://doi.org//10.1016/s0039-6028%2802%2901546-7
- https://doi.org//10.1103/physrevb.73.155425
- https://doi.org//10.1016/j.ceramint.2018.06.096
- https://doi.org//10.1016/j.apsusc.2010.10.051
- https://doi.org//10.1039/c5ta02519b
- https://doi.org//10.3389/fenrg.2021.677980
- https://doi.org//10.1016/j.snb.2016.02.096
- https://doi.org//10.1038/srep05179
- https://doi.org//10.1021/cm5033755
- https://doi.org//10.1021/jp5034849
- https://doi.org//10.1039/c4ra10578h
- https://doi.org//10.1039/c4ta06655c
- https://doi.org//10.1039/c4cp04578e
- https://doi.org//10.1039/c5dt04822b
- https://doi.org//10.1002/chem.201500442
- https://doi.org//10.1002/pssb.19620020803
- https://doi.org//10.1021/cm010655e
- https://doi.org//10.1103/physrevb.65.113102
- https://doi.org//10.1021/cm062742i
- https://doi.org//10.1016/j.tca.2019.178374
- https://doi.org//10.1016/j.rser.2016.12.033
- https://doi.org//10.1038/srep29826
- https://doi.org//10.1016/j.solener.2014.02.033
- https://doi.org//10.1016/j.solener.2013.10.021
- https://doi.org//10.1016/j.ceramint.2019.05.075
- https://doi.org//10.1039/c2ee21798h
- https://doi.org//10.1016/j.energy.2014.01.112
- https://doi.org//10.1021/acsaem.1c01274
- https://doi.org//10.1016/j.pecs.2019.100785
- https://doi.org//10.1557/mrs.2012.56
- https://doi.org//10.1016/j.solener.2018.06.058
- https://doi.org//10.1016/j.apsusc.2014.11.177
- https://doi.org//10.1021/acs.energyfuels.5b00351
- https://doi.org//10.1016/s0921-5107%2802%2900758-4
- https://doi.org//10.1039/c3ee41372a
- https://doi.org//10.1021/ac60363a034
- https://doi.org//10.1016/j.ijhydene.2011.07.089
- https://doi.org//10.1002/aenm.201300469
- https://doi.org//10.1016/j.jssc.2008.01.038
- https://doi.org//10.1039/c7se00516d
- https://doi.org//10.1016/j.memsci.2011.08.006
- https://doi.org//10.1016/j.ijhydene.2016.07.041
- https://doi.org//10.1154/1.1481522
- https://doi.org//10.1006/jssc.1998.8073
- https://doi.org//10.1016/j.memsci.2015.02.036
- https://doi.org//10.1063/1.4822961
- https://doi.org//10.1016/j.solener.2017.12.006
- https://doi.org//10.1016/j.solidstatesciences.2013.02.019
- https://doi.org//10.1021/acsaem.8b01994
- https://doi.org//10.3323/jcorr.64.281
- https://doi.org//10.1021/ef301923h
- https://doi.org//10.1115/1.2840576
- https://doi.org//10.1107/s0567740869003220
- https://doi.org//10.1103/physrevb.5.4709
- https://doi.org//10.1016/j.pecs.2017.03.003
- https://doi.org//10.1016/j.apsusc.2019.05.284
- https://doi.org//10.1016/j.apsusc.2019.144908
- https://doi.org//10.1016/j.fuel.2020.119154
- https://doi.org//10.1016/j.fuel.2019.115624
- https://doi.org//10.1016/0360-5442%2894%2900099-o
- https://doi.org//10.1017/s0885715615000032
- https://doi.org//10.1016/0368-2048%2884%2980060-2
- https://doi.org//10.1016/0368-2048%2891%2985005-e
- https://doi.org//10.1209/0295-5075/24/4/008
- https://doi.org//10.1016/j.cej.2020.124426
- https://doi.org//10.1038/srep19511
- https://doi.org//10.1016/j.scib.2017.03.017
- https://doi.org//10.1016/j.materresbull.2014.06.016
- https://doi.org//10.1016/j.jallcom.2021.158808
- https://doi.org//10.1063/1.2171513
- https://doi.org//10.1016/s0169-4332%2899%2900593-0
- https://doi.org//10.1007/s11664-014-3326-8
Usage metrics
Read the peer-reviewed publication
Categories
- Nuclear Engineering (incl. Fuel Enrichment and Waste Processing and Storage)
- Chemical Engineering not elsewhere classified
- Chemical Sciences not elsewhere classified
- Carbon Sequestration Science
- Automotive Combustion and Fuel Engineering (incl. Alternative/Renewable Fuels)
- Energy Generation, Conversion and Storage Engineering
- Power and Energy Systems Engineering (excl. Renewable Power)
- Renewable Power and Energy Systems Engineering (excl. Solar Cells)
- Carbon Capture Engineering (excl. Sequestration)
- Nuclear Engineering
- Non-automotive Combustion and Fuel Engineering (incl. Alternative/Renewable Fuels)