DataSheet1_Oleaginous Microalga Coccomyxa subellipsoidea as a Highly Effective Cell Factory for CO2 Fixation and High-Protein Biomass Production by Optimal Supply of Inorganic Carbon and Nitrogen.docx
Microalgae used for CO2 biofixation can effectively relieve CO2 emissions and produce high-value biomass to achieve “waste-to-treasure” bioconversion. However, the low CO2 fixation efficiency and the restricted application of biomass are currently bottlenecks, limiting the economic viability of CO2 biofixation by microalgae. To achieve high-efficient CO2 fixation and high-protein biomass production, the oleaginous microalga Coccomyxa subellipsoidea (C. subellipsoidea) was cultivated autotrophically through optimizing inorganic carbon and nitrogen supply. 0.42 g L−1 NaHCO3 supplemented with 2% CO2 as a hybrid carbon source resulted in high biomass concentration (3.89 g L−1) and productivity (318.33) with CO2 fixation rate 544.21 mg L−1 d−1 in shake flasks. Then, used in a 5-L photo-fermenter, the maximal protein content (60.93% DW) in batch 1, and the highest CO2 fixation rate (1043.95 mg L−1 d−1) with protein content (58.48% DW) in batch 2 of repeated fed-batch cultures were achieved under 2.5 g L−1 nitrate. The relative expression of key genes involved in photosynthesis, glycolysis, and protein synthesis showed significant upregulation. This study developed a promising approach for enhancing carbon allocation to protein synthesis in oleaginous microalga, facilitating the bioconversion of the fixed carbon into algal protein instead of oil in green manufacturing.
History
References
- https://doi.org//10.1111/jpy.12167
- https://doi.org//10.1186/gb-2012-13-5-r39
- https://doi.org//10.1175/2020BAMSStateoftheClimate.1
- https://doi.org//10.1007/s10811-021-02618-6
- https://doi.org//10.1016/j.biortech.2015.04.116
- https://doi.org//10.1016/j.marpolbul.2012.04.006
- https://doi.org//10.1016/j.aca.2013.03.005
- https://doi.org//10.1016/j.scitotenv.2018.10.070
- https://doi.org//10.1093/mp/sst120
- https://doi.org//10.1016/j.ymben.2018.03.001
- https://doi.org//10.1016/j.biortech.2010.01.065
- https://doi.org//10.1016/j.biortech.2016.04.078
- https://doi.org//10.1016/j.tifs.2021.03.050
- https://doi.org//10.1016/j.algal.2018.04.019
- https://doi.org//10.1007/s10811-011-9782-0
- https://doi.org//10.1007/s00253-013-5442-4
- https://doi.org//10.1016/j.jwpe.2019.100907
- https://doi.org//10.1104/pp.18.01610
- https://doi.org//10.1016/j.chemosphere.2017.09.125
- https://doi.org//10.1139/b09-005
- https://doi.org//10.1021/acs.jafc.0c05830
- https://doi.org//10.1016/j.scitotenv.2020.144185
- https://doi.org//10.1186/s13068-015-0265-4
- https://doi.org//10.1186/2049-1891-4-53
- https://doi.org//10.1104/pp.110.165159
- https://doi.org//10.1093/jxb/erx137
- https://doi.org//10.1016/j.tibtech.2020.12.010
- https://doi.org//10.1016/j.biortech.2014.01.025
- https://doi.org//10.1186/s13068-016-0571-5
- https://doi.org//10.1088/1748-9326/ac4ebf
- https://doi.org//10.1016/j.jqsrt.2011.07.004
- https://doi.org//10.1016/j.jcou.2020.101371
- https://doi.org//10.1039/c6ee01493c
- https://doi.org//10.1186/s13068-020-01760-6
- https://doi.org//10.1128/EC.00363-12
- https://doi.org//10.1016/j.ijggc.2019.01.001
- https://doi.org//10.1016/j.ijggc.2019.06.002
- https://doi.org//10.1016/j.jclepro.2019.117864
- https://doi.org//10.1016/j.scitotenv.2020.144590
- https://doi.org//10.1016/j.biortech.2016.08.063
- https://doi.org//10.1016/j.anifeedsci.2020.114712
- https://doi.org//10.1016/j.biortech.2018.06.076
- https://doi.org//10.1007/s11274-017-2324-4
- https://doi.org//10.1016/j.biortech.2020.123499
- https://doi.org//10.1111/tpj.12829
- https://doi.org//10.1016/j.cej.2021.131968
- https://doi.org//10.1007/s11274-019-2682-1
- https://doi.org//10.1016/j.scitotenv.2017.10.127
- https://doi.org//10.1016/j.algal.2017.07.023
- https://doi.org//10.1016/j.biortech.2014.08.017
- https://doi.org//10.1016/j.scitotenv.2021.149049
- https://doi.org//10.1016/j.jclepro.2019.118697
- https://doi.org//10.1016/j.rser.2017.03.065
- https://doi.org//10.1016/j.cej.2022.135598
- https://doi.org//10.1016/j.jcou.2019.12.023
Usage metrics
Read the peer-reviewed publication
Categories
- Agricultural Marine Biotechnology
- Biomaterials
- Biomechanical Engineering
- Biotechnology
- Biomarkers
- Biomedical Engineering not elsewhere classified
- Synthetic Biology
- Bioremediation
- Bioprocessing, Bioproduction and Bioproducts
- Industrial Biotechnology Diagnostics (incl. Biosensors)
- Industrial Microbiology (incl. Biofeedstocks)
- Industrial Molecular Engineering of Nucleic Acids and Proteins
- Industrial Biotechnology not elsewhere classified
- Medical Biotechnology Diagnostics (incl. Biosensors)
- Biological Engineering
- Medical Molecular Engineering of Nucleic Acids and Proteins
- Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
- Medical Biotechnology not elsewhere classified
- Genetic Engineering