DataSheet1_Food-Derived High Arginine Peptides Promote Spermatogenesis Recovery in Busulfan Treated Mice.PDF
Food-derived peptides with high arginine content have important applications in medicine and food industries, but their potential application in the treatment of oligoasthenospermia remains elusive. Here, we report that high-arginine peptides, such as Oyster peptides and Perilla purple peptides were able to promote spermatogenesis recovery in busulfan-treated mice. We found that both Opp and Ppp could increase sperm concentration and motility after busulfan-induced testicular damage in mice. Further research revealed that Opp and Ppp might promote spermatogonia proliferation, which improved blood-testis barrier recovery between Sertoli cells. Taken together, these high-arginine peptides might be used as a medication or therapeutic component of a diet prescription to improve the fertility of some oligoasthenospermia patients.
History
References
- https://doi.org//10.1073/pnas.1811520115
- https://doi.org//10.3390/md11040975
- https://doi.org//10.1007/s13197-015-1731-5
- https://doi.org//10.1038/nrurol.2017.69
- https://doi.org//10.1093/humrep/dem046
- https://doi.org//10.5271/sjweh.1060
- https://doi.org//10.1016/j.eururo.2010.03.041
- https://doi.org//10.1016/0027-5107(87)90057-1
- https://doi.org//10.1007/s00343-013-2311-z
- https://doi.org//10.3892/mmr.2016.4879
- https://doi.org//10.1016/j.foodchem.2017.10.087
- https://doi.org//10.1016/j.biopha.2020.110868
- https://doi.org//10.1124/pr.110.002790
- https://doi.org//10.1111/bph.13608
- https://doi.org//10.1016/j.clnu.2008.05.007
- https://doi.org//10.1016/S0022-5347(17)36384-X
- https://doi.org//10.1016/j.fsi.2013.03.357
- https://doi.org//10.1002/ijc.25202
- https://doi.org//10.1093/humupd/dml054
- https://doi.org//10.1016/j.jnutbio.2007.11.010
- https://doi.org//10.1016/j.cell.2016.09.031
- https://doi.org//10.3390/ijms20205191
- https://doi.org//10.3945/jn.111.154823
- https://doi.org//10.1007/978-0-387-09597-4_1
- https://doi.org//10.1080/1061186x.2017.1309044
- https://doi.org//10.1530/REP-09-0495
- https://doi.org//10.1111/ggi.14129
- https://doi.org//10.1146/annurev-cellbio-101512-122353
- https://doi.org//10.1002/jsfa.4464
- https://doi.org//10.1186/s12958-018-0431-1
- https://doi.org//10.1002/biof.5520120124
- https://doi.org//10.1093/jn/134.3.625
- https://doi.org//10.2174/1381612033454883
- https://doi.org//10.1016/j.beem.2010.08.006
- https://doi.org//10.1200/Jco.2009.22.8312
- https://doi.org//10.1111/jfbc.13461
- https://doi.org//10.1016/S0308-8146(98)00030-2
- https://doi.org//10.1016/j.nano.2016.09.002
- https://doi.org//10.1371/journal.pmed.1001356
- https://doi.org//10.1093/jn/137.3.652
- https://doi.org//10.1093/humupd/dmn042
- https://doi.org//10.1007/s00441-019-03092-w
- https://doi.org//10.1007/s00394-015-0974-2
- https://doi.org//10.1093/humupd/dmaa022
- https://doi.org//10.3390/ijms21051716
- https://doi.org//10.1210/er.2018-00010
- https://doi.org//10.1016/j.fertnstert.2020.11.015
- https://doi.org//10.1038/cr.2014.70
- https://doi.org//10.3390/md8020255
- https://doi.org//10.1038/s41467-019-13193-3
- https://doi.org//10.1016/j.bbamem.2017.04.020
- https://doi.org//10.1016/j.livsci.2007.07.003
- https://doi.org//10.1016/j.molmed.2019.09.006
- https://doi.org//10.1016/j.fct.2016.11.023
- https://doi.org//10.1016/j.pbiomolbio.2017.09.024
- https://doi.org//10.1016/j.foodres.2019.02.033
- https://doi.org//10.1016/j.tox.2020.152489
- https://doi.org//10.7150/thno.43189
- https://doi.org//10.1093/humrep/der357