DataSheet1_Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli.docx
The compounds 5-aminovalerate and δ-valerolactam are important building blocks that can be used to synthesize bioplastics. The production of 5-aminovalerate and δ-valerolactam in microorganisms provides an ideal source that reduces the cost. To achieve efficient biobased coproduction of 5-aminovalerate and δ-valerolactam in Escherichia coli, a single biotransformation step from L-lysine was constructed. First, an equilibrium mixture was formed by L-lysine α-oxidase RaiP from Scomber japonicus. In addition, by adjusting the pH and H2O2 concentration, the titers of 5-aminovalerate and δ-valerolactam reached 10.24 and 1.82 g/L from 40 g/L L-lysine HCl at pH 5.0 and 10 mM H2O2, respectively. With the optimized pH value, the δ-valerolactam titer was improved to 6.88 g/L at pH 9.0 with a molar yield of 0.35 mol/mol lysine. The ratio of 5AVA and δ-valerolactam was obviously affected by pH value. The ratio of 5AVA and δ-valerolactam could be obtained in the range of 5.63:1–0.58:1 at pH 5.0–9.0 from the equilibrium mixture. As a result, the simultaneous synthesis of 5-aminovalerate and δ-valerolactam from L-lysine in Escherichia coli is highly promising. To our knowledge, this result constitutes the highest δ-valerolactam titer reported by biological methods. In summary, a commercially implied bioprocess developed for the coproduction of 5-aminovalerate and δ-valerolactam using engineered Escherichia coli.
History
Usage metrics
Categories
- Agricultural Marine Biotechnology
- Biomaterials
- Biomechanical Engineering
- Biotechnology
- Biomarkers
- Biomedical Engineering not elsewhere classified
- Synthetic Biology
- Bioremediation
- Bioprocessing, Bioproduction and Bioproducts
- Industrial Biotechnology Diagnostics (incl. Biosensors)
- Industrial Microbiology (incl. Biofeedstocks)
- Industrial Molecular Engineering of Nucleic Acids and Proteins
- Industrial Biotechnology not elsewhere classified
- Medical Biotechnology Diagnostics (incl. Biosensors)
- Biological Engineering
- Medical Molecular Engineering of Nucleic Acids and Proteins
- Regenerative Medicine (incl. Stem Cells and Tissue Engineering)
- Medical Biotechnology not elsewhere classified
- Genetic Engineering