DataSheet1_Aiding Grasp Synthesis for Novel Objects Using Heuristic-Based and Data-Driven Active Vision Methods.ZIP (29.79 MB)
Download file

DataSheet1_Aiding Grasp Synthesis for Novel Objects Using Heuristic-Based and Data-Driven Active Vision Methods.ZIP

Download (29.79 MB)
dataset
posted on 15.07.2021, 05:46 by Sabhari Natarajan, Galen Brown, Berk Calli

In this work, we present several heuristic-based and data-driven active vision strategies for viewpoint optimization of an arm-mounted depth camera to aid robotic grasping. These strategies aim to efficiently collect data to boost the performance of an underlying grasp synthesis algorithm. We created an open-source benchmarking platform in simulation (https://github.com/galenbr/2021ActiveVision), and provide an extensive study for assessing the performance of the proposed methods as well as comparing them against various baseline strategies. We also provide an experimental study with a real-world two finger parallel jaw gripper setup by utilizing an existing grasp planning benchmark in the literature. With these analyses, we were able to quantitatively demonstrate the versatility of heuristic methods that prioritize certain types of exploration, and qualitatively show their robustness to both novel objects and the transition from simulation to the real world. We identified scenarios in which our methods did not perform well and objectively difficult scenarios, and present a discussion on which avenues for future research show promise.

History