DataSheet1_A Cross-Linked Poly(Ethylene Oxide)-Based Electrolyte for All-Solid-State Lithium Metal Batteries With Long Cycling Stability.PDF
A cross-linked poly(ethylene oxide) (PEO)-based electrolyte with polyaryl polymethylene isocyanate (PAPI) as the cross-linking agent is synthesized by a facile one-pot reaction. The PEO chains are cross-linked by PAPI through the reaction between hydroxyl groups (−OH) and isocyanate groups (−N=C=O). The effects of PAPI on the electrochemical performance of the PEO-based electrolyte and the stability of the electrolyte/electrode interface are investigated. The PEO–PAPI electrolyte has an ionic conductivity of 9.3 × 10–5−1.3 × 10–4 S cm−1 at 60°C. The cross-linked PEO–PAPI electrolyte exhibits enhanced mechanical properties compared to pristine PEO and shows good compatibility with a lithium (Li) metal anode. An all-solid-state Li metal battery (ASSLMB) with the optimized PEO–PAPI electrolyte and a LiFePO4 cathode (1.62 mg cm−2 in mass loading) shows a discharge capacity of 112.8 mAh g−1 after 700 cycles with a current density of 88 μA cm−2 at 60°C. Even with a high mass loading of 8.4 mg cm−2, the ASSLMB with the cross-linked PEO-based electrolyte shows a good cycle performance. The experimental data show that the cross-linked PEO–PAPI electrolyte is a promising candidate for solid electrolytes used in ASSLMBs.
History
References
- https://doi.org//10.1016/j.eurpolymj.2017.02.004
- https://doi.org//10.1021/acs.chemrev.5b00563
- https://doi.org//10.1016/j.ssi.2018.02.030
- https://doi.org//10.1016/j.electacta.2016.10.122
- https://doi.org//10.1002/smll.201802244
- https://doi.org//10.1016/j.electacta.2016.06.025
- https://doi.org//10.1016/j.jpowsour.2016.09.063
- https://doi.org//10.1149/2.1371814jes
- https://doi.org//10.1016/j.jpowsour.2017.04.045
- https://doi.org//10.1016/j.electacta.2017.08.162
- https://doi.org//10.1002/adma.201802068
- https://doi.org//10.1016/j.mser.2018.10.004
- https://doi.org//10.1016/j.jpowsour.2015.09.061
- https://doi.org//10.1021/jacs.7b10864
- https://doi.org//10.1021/acs.langmuir.9b00041
- https://doi.org//10.1002/adma.201705702
- https://doi.org//10.1002/macp.201600040
- https://doi.org//10.1016/j.jpowsour.2015.03.058
- https://doi.org//10.1002/aenm.201903376
- https://doi.org//10.1021/ja502133j
- https://doi.org//10.1166/sam.2017.3086
- https://doi.org//10.1039/c8dt02904k
- https://doi.org//10.1016/j.jpowsour.2018.04.019
- https://doi.org//10.1038/s41578-019-0103-6
- https://doi.org//10.1002/adma.201604460
- https://doi.org//10.1016/j.jpowsour.2019.227175
- https://doi.org//10.1016/j.polymer.2005.02.045
- https://doi.org//10.1002/adma.201502059
- https://doi.org//10.1038/srep19892
- https://doi.org//10.1021/acsami.9b22968
- https://doi.org//10.1016/j.electacta.2015.09.019
- https://doi.org//10.1021/acsami.8b06658
- https://doi.org//10.1039/c8ee00540k
- https://doi.org//10.1016/j.chempr.2018.11.013
- https://doi.org//10.1021/acsami.7b03806
- https://doi.org//10.1016/j.nanoen.2019.05.002
- https://doi.org//10.1016/j.ensm.2016.07.003
- https://doi.org//10.1016/j.ssi.2018.02.040
- https://doi.org//10.1016/j.nanoen.2018.01.028
- https://doi.org//10.1002/adma.201806082
- https://doi.org//10.1002/adma.201805574
- https://doi.org//10.1039/c7ta10517g
- https://doi.org//10.1038/s41467-018-02888-8