Data_Sheet_2_Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells.PDF

<p>Autoimmune myocarditis often leads to dilated cardiomyopathy (DCM). Although T cell reactivity to cardiac self-antigen is common in the disease, it is unknown which antigen presenting cell (APC) triggers autoimmunity. Experimental autoimmune myocarditis (EAM) was induced by immunizing mice with α-myosin loaded bone marrow APCs cultured in GM-CSF. APCs found in such cultures include conventional type 2 CD11b<sup>+</sup> cDCs (GM-cDC2s) and monocyte-derived cells (GM-MCs). However, only α-myosin loaded GM-cDC2s could induce EAM. We also studied antigen presenting capacity of endogenous type 1 CD24<sup>+</sup> cDCs (cDC1s), cDC2s, and MCs for α-myosin-specific TCR-transgenic TCR-M CD4<sup>+</sup> T cells. After EAM induction, all cardiac APCs significantly increased and cDCs migrated to the heart-draining mediastinal lymph node (LN). Primarily cDC2s presented α-myosin to TCR-M cells and induced Th1/Th17 differentiation. Loss of IRF4 in Irf4<sup>fl/fl</sup>.Cd11cCre mice reduced MHCII expression on GM-cDC2s in vitro and cDC2 migration in vivo. However, partly defective cDC2 functions in Irf4<sup>fl/fl</sup>.Cd11cCre mice did not suppress EAM. MCs were the largest APC subset in the inflamed heart and produced pro-inflammatory cytokines. Targeting APC populations could be exploited in the design of new therapies for cardiac autoimmunity.</p>