## Data_Sheet_1_Non-linear Least-Squares Optimization of Rational Filters for the Solution of Interior Hermitian Eigenvalue Problems.pdf

Rational filter functions can be used to improve convergence of contour-based eigensolvers, a popular family of algorithms for the solution of the interior eigenvalue problem. We present a framework for the optimization of rational filters based on a non-convex weighted Least-Squares scheme. When used in combination with a contour based eigensolvers library, our filters out-perform existing ones on a large and representative set of benchmark problems. This work provides a detailed description of: (1) a set up of the optimization process that exploits symmetries of the filter function for Hermitian eigenproblems, (2) a formulation of the gradient descent and Levenberg-Marquardt algorithms that exploits the symmetries, (3) a method to select the starting position for the optimization algorithms that reliably produces effective filters, (4) a constrained optimization scheme that produces filter functions with specific properties that may be beneficial to the performance of the eigensolver that employs them.

#### Categories

- Statistics
- Mathematical Physics not elsewhere classified
- Ordinary Differential Equations, Difference Equations and Dynamical Systems
- Computation Theory and Mathematics
- Financial Mathematics
- Applied Mathematics not elsewhere classified
- Optimisation
- Numerical and Computational Mathematics not elsewhere classified
- Applied Statistics
- Numerical Computation
- Computation Theory and Mathematics not elsewhere classified