10.3389/fmicb.2018.03357.s001 Hao Sun Hao Sun Irini Angelidaki Irini Angelidaki Shubiao Wu Shubiao Wu Renjie Dong Renjie Dong Yifeng Zhang Yifeng Zhang Data_Sheet_1_The Potential of Bioelectrochemical Sensor for Monitoring of Acetate During Anaerobic Digestion: Focusing on Novel Reactor Design.pdf Frontiers 2019 bioelectrochemical system biosensor acetate sensitivity anaerobic digestion 2019-01-15 04:12:03 Dataset https://frontiersin.figshare.com/articles/dataset/Data_Sheet_1_The_Potential_of_Bioelectrochemical_Sensor_for_Monitoring_of_Acetate_During_Anaerobic_Digestion_Focusing_on_Novel_Reactor_Design_pdf/7586774 <p>Acetate as the dominant fraction of volatile fatty acids (VFAs) is an important intermediate in metabolic pathways of methanogenesis, which could reflect the stability status of anaerobic digestion (AD) process. Bioelectrochemical sensors for environmental or bioprocess monitoring have become increasingly attractive in recent years. Although it was more favorable, several challenges still need to be addressed for acetate detection, including large electrode spacing, low stability, biofouling at the cathode and low detection range. In this study, an innovative biosensor on the basis of a three-chamber microbial electrochemical system was proposed to monitor the acetate during the AD process. In such a system, acetate was first transferred from sample chamber through the anion exchange membrane (AEM) to anode due to the driven force of concentration difference and then oxidized by anodic biofilm as a substrate for the current generation. With such design, the influence of waste properties fluctuation in the cathodic reaction could be avoided. The response of current density to different acetate concentrations was investigated. The selectivity, the influence of the sample temperature and the external resistance were also evaluated. The correlation (R<sup>2</sup> > 0.99) between the current densities and acetate concentrations (up to 160 mM) was established at specific reaction time (from 2 to 5 h). Current densities after 5 h reaction were improving about 20% when the sample temperature was high (e.g., 37 and 55°C). The detection range increased along with the decrease of external resistance. The acetate concentrations of AD effluents as determined by the biosensor where within 24.2% of the ones determined by gas chromatography. Nevertheless, the application of the biosensor for monitoring acetate in environmental samples could still be promising.</p>