10.3389/fmicb.2018.02115.s001 Min Lv Min Lv Ching Lo Ching Lo Cheng-Chih Hsu Cheng-Chih Hsu Yuwen Wang Yuwen Wang Yin-Ru Chiang Yin-Ru Chiang Qian Sun Qian Sun Yang Wu Yang Wu Yan Li Yan Li Lingxin Chen Lingxin Chen Chang-Ping Yu Chang-Ping Yu Table_1_Identification of Enantiomeric Byproducts During Microalgae-Mediated Transformation of Metoprolol by MS/MS Spectrum Based Networking.DOCX Frontiers 2018 metoprolol (MPL) microalgae enantioselective biodegradation transformation products biodegradation pathway MS/MS spectral similarity networking 2018-09-07 04:14:43 Dataset https://frontiersin.figshare.com/articles/dataset/Table_1_Identification_of_Enantiomeric_Byproducts_During_Microalgae-Mediated_Transformation_of_Metoprolol_by_MS_MS_Spectrum_Based_Networking_DOCX/7057256 <p>Metoprolol (MPL) is a chiral β-blocker ubiquitously detected in various environments due to its low to moderate removal in wastewater treatment plants. This study was conducted to test the potential of using microalgae to degrade emerging contaminant MPL and to characterize the enantiomeric enrichment during MPL degradation by microalgae. The results showed that PO<sub>4</sub><sup>3−</sup>- P, NO<sub>3</sub><sup>−</sup>- N and MPL could be simultaneously removed in the synthetic effluent by the targeted microalgae species, indicating microalgae were promising in wastewater treatment. Stereoselectivity was observed during MPL degradation by microalgae, with R-form enrichment. A marginal linear relationship between MPL degradation and enantiomeric enrichment was observed, implying that the enantiomeric tool, used as a quantitative indicator of biodegradation, could possibly be applied in MPL degradation by microalgae. An efficient liquid chromatograph tandem high resolution mass spectrometry (LC-HRMS/MS) chiral analytical method was developed to identify transformation products (TPs). The results showed that MS/MS spectral similarity networking could be used as a powerful tool to quickly identify unknown TPs. A total of 6 pairs of chiral TPs were identified, among which two new TPs of MPL including hydroxy{4-[2-hydroxy-3-(isopropylamino)propoxy]phenyl}acetic acid (α-HMPLA) and 4-[2-Hydroxy-3-(isopropylamino)propoxy]benzaldehyde (DMPLD) were firstly reported, and proposed transformation pathways of MPL by microalgae were given. Considering the paired TPs detected and that the degradation of the two enantiomers followed first order kinetics, the two enantiomers likely had the same degradation mechanism.</p>