Video2_Scalable and Accurate ECG Simulation for Reaction-Diffusion Models of the Human Heart.MP4 Mark Potse 10.3389/fphys.2018.00370.s002 https://frontiersin.figshare.com/articles/media/Video2_Scalable_and_Accurate_ECG_Simulation_for_Reaction-Diffusion_Models_of_the_Human_Heart_MP4/6165530 <p>Realistic electrocardiogram (ECG) simulation with numerical models is important for research linking cellular and molecular physiology to clinically observable signals, and crucial for patient tailoring of numerical heart models. However, ECG simulation with a realistic torso model is computationally much harder than simulation of cardiac activity itself, so that many studies with sophisticated heart models have resorted to crude approximations of the ECG. This paper shows how the classical concept of electrocardiographic lead fields can be used for an ECG simulation method that matches the realism of modern heart models. The accuracy and resource requirements were compared to those of a full-torso solution for the potential and scaling was tested up to 14,336 cores with a heart model consisting of 11 million nodes. Reference ECGs were computed on a 3.3 billion-node heart-torso mesh at 0.2 mm resolution. The results show that the lead-field method is more efficient than a full-torso solution when the number of simulated samples is larger than the number of computed ECG leads. While the initial computation of the lead fields remains a hard and poorly scalable problem, the ECG computation itself scales almost perfectly and, even for several hundreds of ECG leads, takes much less time than the underlying simulation of cardiac activity.</p> 2018-04-20 07:30:24 numerical modeling electrocardiogram high-performance computing reaction-diffusion model bidomain model lead fields