Li, Kang Yuan, Xiao-Xue Sun, He-Min Zhao, Long-Sheng Tang, Ruocong Chen, Zhi-Hua Qin, Qi-Long Chen, Xiu-Lan Zhang, Yu-Zhong Su, Hai-Nan Image_1.PDF <p>Peptidoglycan is the fundamental structural constituent of the bacterial cell wall. Despite many years of research, the architecture of peptidoglycan is still largely elusive. Here, we report the high-resolution architecture of peptidoglycan from the model Gram-positive bacterium Bacillus subtilis. We provide high-resolution evidence of peptidoglycan architecture remodeling at different growth stages. Side wall peptidoglycan from B. subtilis strain AS1.398 changed from an irregular architecture in exponential growth phase to an ordered cable-like architecture in stationary phase. Thickness of side wall peptidoglycan was found to be related with growth stages, with a slight increase after transition to stationary phase. Septal disks were synthesized progressively toward the center, while the surface features were less clear than those imaged with side walls. Compared with previous studies, our results revealed slight differences in architecture of peptidoglycan from different B. subtilis strains, expanding our knowledge about the architectural features of B. subtilis peptidoglycan.</p> cell wall;peptidoglycan;structure;remodeling;atomic force microscopy 2018-03-29
    https://frontiersin.figshare.com/articles/figure/Image_1_PDF/6060647
10.3389/fmicb.2018.00620.s001