10.3389/fphys.2018.00174.s002 Eva Svandova Eva Svandova Barbora Vesela Barbora Vesela Abigail S. Tucker Abigail S. Tucker Eva Matalova Eva Matalova Image2.TIF Frontiers 2018 caspase differentiation apoptosis tooth intramembranous bone osteocalcin 2018-03-07 04:28:16 Figure https://frontiersin.figshare.com/articles/figure/Image2_TIF/5954797 <p>Caspases are well known proteases in the context of inflammation and apoptosis. Recently, novel roles of pro-apoptotic caspases have been reported, including findings related to the development of hard tissues. To further investigate these emerging functions of pro-apoptotic caspases, the in vivo localisation of key pro-apoptotic caspases (-3,-6,-7,-8, and -9) was assessed, concentrating on the development of two neighbouring hard tissues, cells participating in odontogenesis (represented by the first mouse molar) and intramembranous osteogenesis (mandibular/alveolar bone). The expression of the different caspases within the developing tissues was correlated with the apoptotic status of the cells, to produce a picture of whether different caspases have potentially distinct, or overlapping non-apoptotic functions. The in vivo investigation was additionally supported by examination of caspases in an osteoblast-like cell line in vitro. Caspases-3,-7, and -9 were activated in apoptotic cells of the primary enamel knot of the first molar; however, caspase-7 and -8 activation was also associated with the non-apoptotic enamel epithelium at the same stage and later with differentiating/differentiated odontoblasts and ameloblasts. In the adjacent bone, active caspases-7 and -8 were present abundantly in the prenatal period, while the appearance of caspases-3,-6, and -9 was marginal. Perinatally, caspases-3 and -7 were evident in some osteoclasts and osteoblastic cells, and caspase-8 was abundant mostly in osteoclasts. In addition, postnatal activation of caspases-7 and -8 was retained in osteocytes. The results provide a comprehensive temporo-spatial pattern of pro-apoptotic caspase activation, and demonstrate both unique and overlapping activation in non-apoptotic cells during development of the molar tooth and mandibular/alveolar bone. The importance of caspases in osteogenic pathways is highlighted by caspase inhibition in osteoblast-like cells, which led to a significant decrease in osteocalcin expression, supporting a role in hard tissue cell differentiation.</p>